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The subsystem functional scheme is a promising approach recently proposed for constructing exchange-
correlation density functionals. In this scheme, the physics in each part of real materials is described by
mapping to a characteristic model system. The “confinement physics,” an essential physical ingredient that has
been left out in present functionals, is studied by employing the harmonic-oscillator �HO� gas model. By
performing the potential→density and the density→exchange energy per particle mappings based on two
model systems characterizing the physics in the interior �uniform electron-gas model� and surface regions
�Airy gas model� of materials for the HO gases, we show that the confinement physics emerges when only the
lowest subband of the HO gas is occupied by electrons. We examine the approximations of the exchange
energy by several state-of-the-art functionals for the HO gas, and none of them produces adequate accuracy in
the confinement dominated cases. A generic functional that incorporates the description of the confinement
physics is needed.
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I. INTRODUCTION

In the past few decades, Kohn-Sham �KS� density-
functional theory �DFT� �Refs. 1 and 2� has been tremen-
dously successful in electronic-structure calculations for a
great variety of systems, owing to its exceptional ability to
provide accurate calculations while still keeping a relatively
low computational cost. In DFT, the difficult part of many-
body effects are reformulated into the exchange-correlation
�XC� energy EXC, as a functional of the ground-state electron
density n. A good approximation to the universal XC energy
functional is the critical prerequisite for accurate DFT-based
modeling.

One area where DFT with regular, semilocal, XC func-
tionals has been less successful is solid-state systems with
highly localized states, such as bonds originating from d and
f electrons as typically found in transition-metal compounds
�see, e.g., Refs. 3 and 4�. This problem is often discussed as
one effect of the self-interaction error that originates from a
surplus electrostatic term in the Hartree energy. Common XC
functionals cancel much of this positive energy contribution
but the remaining part artificially increases the energy of
localized states and leads to overdelocalization. Many differ-
ent schemes have been proposed to address the self-
interaction error, some well-known examples include �i� an
explicit orbital-dependent correction that removes the sur-
plus electrostatic term �sic correction�;4,5 �ii� interpolating
the DFT functional with the self-interaction free Hartree-
Fock exchange energy �hybrid functionals�;6,7 and �iii� di-
rectly modifying the KS potential to make it reproduce es-
sential features of exact exchange.8–13 However, none of
these schemes provide a general treatment of this error
within an unaltered semilocal DFT framework. Another ob-
servation of the difficulty for XC functionals to deal with
systems with electrons confined in space can be made in that
functionals which are not specifically oriented toward quan-
tum chemistry �e.g., by fitting to atoms and small molecules�
often have trouble with such systems �see, e.g., Ref. 14�.

Connections have been made also between such errors and
the self-interaction error.15

Rather than focusing on the surplus term from the Hartree
energy, the present work takes a very density-functional cen-
tric view of the error in systems with localized states. We use
a harmonic-oscillator �HO� model to quantify the inability of
current semilocal XC functionals to reproduce the exact ex-
change energy in a system confined in one of its three di-
mensions, which thus implicitly includes the functionals’
lack of ability to cancel the self-interaction error in this situ-
ation. The magnitudes of the errors are connected to a mea-
sure of how confined the system is, and based on this we
conclude that spatial regions in a system can be classified as
more or less dominated by, as we name it, “confinement
physics.” The motivation, discussion, and quantification of
this concept are main points of this paper. Most importantly,
the existence of a confinement physics error inherent to spe-
cific spatial regions in a system enables a parallel with how
the implicit surface error16–18 previously have been success-
fully handled through correction schemes17–19 and in the
construction of the Armiento-Mattsson 2005 �AM05�
functional.20 Hence, our results open for a similar scheme for
correcting the errors for systems with localized electron
states.

The rest of the paper is organized as follows: in Sec. II we
give some background on the XC functionals used in this
work and clarify the parallel between how prior work has
treated the implicit surface region error and how the here
relevant confinement physics error can be addressed. In Sec.
III, we give the details of the HO model system used in our
investigation. In Sec. IV, we study the effect of confinement
on the electron density. In Sec. V, we make small perturba-
tions around the HO model system to make sure our results
in the foregoing section are universal, i.e., not unique for the
highly symmetric HO model alone. In Sec. VI we study the
effects of confinement on the exchange energy. In Sec. VII,
we compare the performance of several currently used func-
tionals for the exchange energy per particle and total ex-
change energy of the HO gas, and show that none of them
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adequately handles strongly confined HO systems. Section
VIII presents our summary and conclusions.

II. EXCHANGE-CORRELATION FUNCTIONALS AND
THE SUBSYSTEM FUNCTIONAL SCHEME

Massive efforts have been devoted to the search for well
performing functionals. By assuming that the XC energy de-
pends solely on the magnitude of the electron density in each
point in space, the local-density approximation �LDA� was
derived from the uniform electron-gas �UEG� model. There-
after, several competing schemes have been proposed to con-
struct effective density functionals. Two of them will be dis-
cussed in the following, the Jacob’s ladder scheme and the
subsystem functional scheme.

The Jacob’s ladder scheme suggested by Perdew et al.21 is
to include additional local ingredients at each higher rung of
the ladder, and thereby being able to satisfy more limits and
other constraints that the exact exchange and correlation
functionals have been proven to fulfill. This scheme has led
to many functionals of widespread use today, such as the
functional of Perdew, Burke, and Ernzerhof �PBE�,22 its re-
vised version called PBEsol,23 and the functional of Tao,
Perdew, Staroverov, and Scuseria �TPSS�.24

The subsystem functional scheme is another route for
functional development, which originates from a very differ-
ent viewpoint initiated by Kohn, Mattsson, and
Armiento.16,25 This approach is based on the observation of
the “nearsightedness” of electrons.26 The total XC energy
can be expressed as an integral over local contributions from
each point in space,

EXC = �
V

n�r��XC�r;�n��dV . �1�

The idea of the subsystem functional scheme is to divide the
entire integration space V into several contiguous sub-
systems, Vj. In each subsystem, the characteristic physics is
described by different density functionals, XC energy per
particle �XC

j �r ; �n��, which is designed based on a character-
istic model system. Then the total XC energy is evaluated by
summing over these subsystems,

EXC = �
j=1

N �
Vj

n�r��XC
j �r;�n��dV . �2�

LDA can be considered as the simplest subsystem functional,
containing only one model system, the UEG. After 40 years
of its invention, surprisingly LDA is still widely in use and
performs very well in numerous applications. The good per-
formance of LDA stems from the compatibility of its ex-
change and correlation energies as they are derived based on
one single model, the UEG, which enables errors in the ex-
change and correlation to cancel each other.27

The subsystem functional scheme makes use of this kind
of compatibility since each subsystem functional is devel-
oped based on a single model system. The AM05
functional20 took a step beyond LDA by including more

types of physics using two different model systems: the UEG
and the Airy gas �AG� model.16 While the UEG is based on
a constant effective potential and gives a good description of
the physics in the interior regions of solid state materials, the
AG uses a strictly linear potential that crosses the chemical
potential, mimicking situations near surfaces and other re-
gions with rapidly varying electron density. We refer to such
regions as “edges.”

For practical purposes, it is necessary to have a built-in
mechanism to automatically separate the system into subre-
gions and apply the specialized functionals. Based on the
local character of the density, AM05 incorporated such a
mechanism by introducing an interpolation index X�s�,
where s= �n

2�3�2�1/3n4/3 is the dimensionless gradient character-
izing the local variations in the density. Thus, a general func-
tional is constructed in the following form:

�XC
AM05�r;�n�� = �XC

interior�n�X�s� + �XC
edge�n,s��1 − X�s�� . �3�

The AM05 functional has been used for calculating vari-
ous material properties of miscellaneous systems28–31 and is
proven to perform exceptionally well for solids and surfaces.
However, the performance is not as good for systems of
more localized characters due to the lack of description of
confinement physics in the functional as we discussed in Sec.
I. This limitation is also shared by all other semilocal func-
tionals. It is highly appealing to have a general functional
that includes all the ingredients of the interior physics, the
edge physics, and the confinement physics, especially for
solving problems involving systems that exhibit both ex-
tended and localized characters. The subsystem functional
scheme suggests a feasible way to attain such a functional by
following the same strategy used in building the AM05
functional:

�XC�r;�n�� = �XC
interior�n�X1�n��1 − X2�n��

+ �XC
edge�n,s��1 − X1�n���1 − X2�n��

+ �XC
confined�n��1 − X1�n��X2�n� , �4�

where X1�n� and X2�n� are the interpolation indices to help
determining how different characteristic physics are mixed at
a specific point.

The first step for constructing this functional is to param-
etrize the subsystem functional �XC

confined�n� from a model sys-
tem containing the confinement physics. The Mathieu gas
�MG� model, based on a sinusoidal effective potential, has
been proposed as a possible candidate for describing the con-
finement physics.25 Its highly tunable parameter space has a
wide spectrum of physical ingredients, which naturally
evolve from the slowly varying interior physics to the tar-
geted confinement physics. However, it is a very difficult
task to parametrize the MG into a simple and useful func-
tional owing to the nonanalyticity of the conventional ex-
change energy per particle expansion in the slowly varying
limit,25 and its relatively complicated parameter space with
two degrees of freedom. Depending on the relative position
of the chemical potential, the MG reaches two limits in the
parameter space. One is the slowly varying limit, resembling
the UEG, when the chemical potential is far above the effec-
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tive potential. The other one is the HO limit as the chemical
potential approaches the very bottom of the sinusoidal effec-
tive potential, the electrons are equivalent to being confined
in harmonic-oscillator potential wells. Thus it is a natural
line of logic to understand the confinement physics starting
from the simpler HO model.

III. HARMONIC-OSCILLATOR MODEL

We consider a model system in which the noninteracting
KS particles are moving in an effective potential that is not
constrained in the x and y directions but restricted with a
parabolic trap in z dimension. We will use the hartree unit
system in the following unless otherwise indicated. We
choose the conventionally used form of the HO potential

vef f�z� =
�2

2
z2, �5�

where � represents the potential strength. Separating vari-
ables in the KS equation,

�−
1

2
�2 + vef f�z�����r� = E����r� , �6�

the normalized eigenfunctions are expressed as

���r� =
1

	L1L2

ei�k1x+k2y�� j�z� , �7�

where �
�k1 ,k2 , j�, kiLi=2�mi �i=1, 2, mi is an integer�,
and L1L2 is the area in x-y dimensions, which will approach
infinity. � j�z� is the wave function for the one-dimensional
KS equation,

�−
1

2

d2

dz2 +
�2

2
z2 − � j�� j�z� = 0. �8�

Scaling the coordinate z with a constant length l=	 1
� , we

obtain a dimensionless coordinate z̄=z / l, with which we re-
write the KS equation and obtain

� d2

dz̄2 − z̄2 + 2l2� j�� j�z� = 0. �9�

The normalized eigenfunctions and eigenenergies for the
above differential equation take the following form:

� j�z� = � 1

l	�2 j j!
�1/2

H j�z̄�e−z̄2/2, �10�

� j =
1

l2 �j + 1/2� , �11�

where Hj�z̄� are the Hermite polynomials.
We let the chemical potential take the form �= �	+ 1

2 � 1
l2 ,

where we follow the same notation as in Ref. 25, that 	 is a
real number, whose integer part N= �	� is the index of the
highest level electrons can occupy in the z dimension, and
the remainder 0
	−N�1 is denoting the continuous bands
in the x-y direction. The index 	 is quantifying the level of

confinement. For a fixed �, larger 	 leads to a wider opening
of the parabolic potential �larger l�, and therefore implies a
less confined situation. This 	-dependent confinement will
be further discussed in the rest of the paper.

The density of the HO gas is

n�z� = 2�
j=0

N

� j
2�z�wj, wj =

1

2�
�� − � j� , �12�

where the factor of 2 accounts for the spins. Inserting the
wave functions of the HO gas, Eq. �10�, we can derive the
�dimensionless� density,

�l3n�z̄�� =
1

�3/2�
j=0

N
1

2 j j!
Hj

2�z̄�e−z̄2
�	 − j� . �13�

As derived in Ref. 16, when electrons can move freely in
the x and y dimensions, the conventional exchange energy
per particle �x

conv is

�x
conv�r� = −

1

2�n�z�� dz��
j

�
j�

� j�z�� j�z��� j��z�� j��z��

��
z�−3g�kj
z,kj�
z� , �14�

where 
z= 
z−z�
. kj is the maximum transverse wave num-
ber associated with � j�z�: kj =	2��−� j�. g�s ,s�� is a univer-
sal function defined as

g�s,s�� = ss��
0

�

dt
J1�st�J1�s�t�

t	1 + t2
, �15�

where J1�x� is the Bessel function of the first kind.
Substituting � j�z� with the HO wave function, Eq. �10�,

the conventional �dimensionless� exchange energy per par-
ticle for the HO gas is obtained

�l�x
conv�z̄�� = −

1

2�2�l3n�z̄��
� dz̄��

j=0

N

�
j�=0

N
1

2 j j!2 j�j�!

� Hj�z̄�Hj�z̄��Hj��z̄�Hj��z̄��e
−�z̄2+z̄�2��
z̄�−3

� g�	2�	 − j�
z̄,	2�	 − j��
z̄� . �16�

With the above dimensionless representation, HO gases
with different potential strength � now fall into one repre-
sentation in which the physical quantities like the density n
and exchange energy per particle �x will depend only on
where the point of interest is in the HO gas as denoted by z̄
and how many quantum energy levels are occupied as repre-
sented by 	.

IV. POTENTIAL\DENSITY MAPPINGS

In Thomas-Fermi theory,32,33 an approximation for the
true density of an electron gas is obtained through a mapping
from the effective potential �V→n�. By regarding a specific
point in the potential as if it is in a uniform electron-gas
potential with the same magnitude of difference between the
chemical and effective potentials, the mapped density reads
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nUEG
V→n�r� =

1

3�2 �2�� − vef f�r���3/2 � � vef f

=0 � � vef f . �17�

Applying the above mapping to the HO gas, the dimen-
sionless density becomes

�l3nUEG
V→n�z̄�� =

l3

3�2 �2	 + 1 − z̄2�3/2 z̄2 � 2	 + 1

=0 z̄2 � 2	 + 1. �18�

In Ref. 16, the density of the Airy gas and its approxima-
tion by the above UEG-based V→n mapping are compared.
The density obtained by the UEG mapping is zero outside of
the edge, where the exact AG solution shows nonzero elec-
tron densities. The UEG mapping also fails to reproduce the
Friedel oscillations, a characteristic of the AG. Hence the
characteristic properties of the edge physics are disclosed by
comparing the UEG derived density and the true density. Our
objective in this section is to reveal the confinement physics
in the HO gas system by applying two types of V→n map-
pings based, respectively, on the UEG, as shown above, and
the AG, which we will introduce in the following.

As illustrated in Fig. 1, we propose an alternative V→n
mapping based on the AG instead of the UEG. That is, de-
pending on the values of �1� the difference between the
chemical and effective potentials, and �2� the gradient of the
potential, we determine a value for the density in a point
from the Airy gas density.

The AG is defined from a linear potential vef f =Fz. Simi-
larly to the HO gas, a dimensionless representation also ex-
ists for the AG by employing a scaling length lAG= �2F�−1/3.
Thus, following the derivation in Ref. 16, and defining the
dimensionless coordinate z̄AG=z / lAG, the density of the AG
can be expressed in an analytical form based on the Airy
function Ai�z̄AG� and its derivative:

nAG�z̄AG� =
1

lAG
3 n0AG�z̄AG� ,

n0AG�z̄AG� = �z̄AG
2 Ai2�z̄AG� − z̄AGAi�2�z̄AG�

− Ai�z̄AG�Ai��z̄AG�/2�/�3�� . �19�

In order to perform the AG-based mapping, we need two
equations to determine the values of F and z0AG,

F = vef f� �z� , �20�

Fz0AG = � − vef f�z� . �21�

This gives a local scaling length of the Airy gas

lAG�z� = � 1

2F
�1/3

= � 1

2vef f� �z��1/3
�22�

and the V→n mapping based on the AG at the point z is

nAG
V→n�z� =

1

lAG
3 �z�

n0AG�z0AG�z�/lAG�z�� . �23�

Applying this to the harmonic-oscillator effective potential in
Eq. �5�, gives

lAG�z� = l� 1

2z̄
�1/3

, �24�

z0AG = l
2	 + 1 − z̄2

2z̄
, �25�

and finally

�l3nAG
V→n�z̄�� = �2z̄�n0AG� �2	 + 1� − z̄2

�2z̄�2/3 � . �26�

We perform the UEG and AG-based V→n mappings on
the HO gas with occupation number 	=0.23 �Fig. 2�a�� and
3.87 �Fig. 2�b�� by employing Eqs. �18� and �26�. For the
relatively high occupation number of 	=3.87, both the
UEG- and AG-based mappings produce good approxima-
tions to the exact HO gas density except for that the UEG
mapping cannot describe the nonvanishing density outside of
the edge. In the case of 	=0.23, there are less electrons in
the HO system than both the UEG and AG mappings have
expected. This is because in both cases the system is antici-
pated to be infinite with continuous energy levels from all
three dimensions that can be occupied from the bottom of the
potential. However, the real situation is that the HO system is
confined in the z dimension, which takes away the con-
tinuum spectrum in this dimension so that we only have a
two-dimensional �2D� energy-level continuum that can be
populated with electrons, therefore, the density becomes
lower than if we had not confined the system.

V. PERTURBED HO GAS

The HO electron gas is one of the few inhomogeneous
interacting many-body systems whose dynamic properties
can be solved exactly. Kohn’s theorem,34 and its
generalizations,34–36 “in the ideal parabolic well the optical
absorption spectrum �of the electron gas� is independent of
the electron-electron interaction, and also independent of the

z0AG

z

Μ

veff

FzAG

FIG. 1. �Color online� An illustration of the Airy gas-based V
→n mapping applied to the HO gas.
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number of electrons in the well.” Slight perturbations will
break this symmetry and may result in drastic variations in
the electron-gas properties. In this paper, only the ground-
state properties of the HO gas are studied but it is still es-
sential to examine whether the electron density will change
discontinuously as the potential of HO gas is distorted
slightly. As discussed above, the HO is one of the limits of
the MG �see Fig. 3�a��. In the following, we will answer this
question by investigating the density variations as the exter-
nal potential deviates from the HO to the MG.

The effective potential of the MG is described by a two-
parameter model,

vef f
MG�z� = ��1 − cos�pz�� . �27�

Following the notations in Ref. 25, the model parameters

can be written in dimensionless form �̄=� /� and p̄
= p / �2kF,u� by considering the chemical potential �. Here
kF,u

2 =2� is the Fermi wave vector of a uniform electron gas
with chemical potential �. The coordinate of the system is
also represented in dimensionless form, z̄MG=kF,uz.

In the limit �̄=� /�→�, the effective potential of the
MG, Eq. �27�, can be expanded around z=0 into a HO form

vef f
MG�z� =

�p2

2
z2 + O�z4� . �28�

Equation �30� in Ref. 25 gives a relation between the MG
parameters and the HO occupation number 	 when the MG
is approaching the HO limit,

	 =
1

2	2�̄p̄2
−

1

2
. �29�

Also considering that �p2 is equivalent to �2 in the HO
gas, and with some algebra, the mapping from the MG to the
HO system can be straightforwardly found to be

z̄HO = z̄MG

1

	2	 + 1
,

�l3nHO�z̄HO�� =
nMG�z̄MG�

nu

�2	 + 1�3/2

3�2 , �30�

where
nMG�z̄MG�

nu
is calculated according to Eq. �B2� in Ref. 25.

1 /2�̄=� /2� characterizes the relative position of the chemi-
cal potential compared to the height of the effective potential
of the MG, 2�, and determines the perturbation extent of the
MG potential from the HO.

In Fig. 3�b�, we show the density of the HO gas with 	
=3.87 and several MGs who have the same occupation num-
ber 	 as the HO but with different �̄. The parameter p̄ of
these MGs is obtained through Eq. �29�. When the relative
height of the chemical potential is 1/100 of the MG potential,
�̄=50, electrons cannot see the finite barrier of the MG po-
tential, hence they are equivalent to being in an infinitely
high HO potential, and there are no difference of the densi-
ties between the MG and the HO systems. When we increase
the relative height of the chemical potential to 1/4 ��̄=2�,
and 1/2 ��̄=1� of the MG effective potential, the densities
start to spread out over the edge by electrons tunneling
through the finite barrier of the MG potential but the pertur-
bation compared to the HO density is still limited, especially
in the center of the well. The continuous changes in the
electron density as the potential is perturbed from the HO to
the MG imply that the HO gas is not a special system in our
case and can generally describe the confinement physics.

VI. DENSITY\EXCHANGE ENERGY PER
PARTICLE MAPPING

Recently Engel and Schmid37 have shown that, by com-
bining the exact exchange and LDA correlation, DFT can

0 1 2 3 4
0.0
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l3 n

MG: Λ�Μ � 1
MG: Λ�Μ � 2
MG: Λ�Μ � 50
HO

(a) (b)

FIG. 3. �Color online� �a� The Mathieu gas potential and its HO
limit. �b� The dimensionless density of the HO gas with 	=3.87 and

mappings from the Mathieu gas with �̄=50, �̄=2, and �̄=1.
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FIG. 2. �Color online� The normalized density of the HO gas �red solid� and the approximate density obtained with the V→n mapping
based on the UEG �dotted; black online� and the AG �dashed; blue online�, see text. Occupancy with �a� 	=0.23 and �b� 	=3.87 are shown.
Shown is also the HO potential used in the mapping and the corresponding discrete energy levels � j from Eq. �11�. Here the x axis of the plot
represents the chemical potential �. Note that the UEG-based V→n mapping gives zero density outside of the edge.

SUBSYSTEM FUNCTIONALS AND THE MISSING… PHYSICAL REVIEW B 82, 115103 �2010�

115103-5



correctly yield the insulating ground states for transition-
metal monoxides while LDA and generalized gradient ap-
proximation �GGA� exchange normally give incorrect results
of ground states with metallic character. This implies that a
major part of the confinement physics is incorporated in the
exchange part of the XC energy. This is also in line with the
analogy to the self-interaction error in Hartree-Fock, where
the exchange term cancels all self-interaction. In the follow-
ing, we will show that, by performing a density-to-exchange
energy per particle �n→�x� mapping based on the UEG and
AG models for the HO gas and comparing with the true �x,
the concealed confinement physics in the HO gas can be
identified.

The LDA exchange parametrization can be considered as
an n→�x mapping based on the UEG, and therefore provides
a good description of the interior physics. On the other hand,
the AG-based mapping describes the edge physics, and there
are several different available parametrizations, all of which
use a GGA-type representation �x�n ,s�=�x

LDA�n�Fx�s�, where
Fx is the refinement factor characterizing the dependence on
the dimensionless gradient s. The local Airy gas �LAG� �Ref.
38� exchange parametrization introduced by Vitos et al. em-
ploys a modified Becke form to fit the exact AG exchange,
and produces very good agreements over the range of 0�s
�20. The local Airy approximation �LAA� �Ref. 20� used in
the AM05 functional is built by exploring the asymptotic
behavior of the exact exchange of the AG, and hence is ac-
curate also in the region far outside of the surface where s is
large. Instead of placing the hard wall infinitely far away and
occupying an infinite number of orbitals as in the AG mod-
eling used in the LAG and LAA, Perdew and co-workers39

chose an alternative AG model with a finite number of orbit-
als occupied, and parametrized it using an extension of the
LAG form. We will use ARPA denoting this parametrization
since it is developed for the construction of the airy gas-
based random phase approximation �ARPA� functional in
Ref. 39.

In Fig. 4, we compare the exact dimensionless exchange
energy per particle, l�x, as calculated in Eq. �16� for the HO
gas, and the mapped values from the UEG and the AG mod-
els using the exact densities of the HO gas, as calculated
from Eq. �13�. In panel �a�, we show a strongly confined
system, with a low occupation number 	=0.23. The UEG-
based mapping gives entirely different values of l�x com-
pared to the exact ones. In the central region of the potential

well �z̄�0�, the UEG mapping overestimate the exchange
energy per particle for the confined HO gas while beyond the
edge �
z̄
�	2	+1�, it approaches zero much faster than the
exact HO gas does. The AG-based exchange parametriza-
tions account for the surface effect, thus give results that
agree better with the exact values, but they still overestimate
the l�x values in the central region of the potential well,
where the variation in density is small and they approach the
UEG limit. For z̄�2, the scaled gradient s�20 and all the
AG-based exchange parametrizations give consistent values,
indicating the physics a single edge gives. Far outside of the
edge, however, s is much larger than 20, so the LAG and
ARPA results are not reliable. LAA keeps the good
asymptotic properties of the Airy gas in this region and
should be used for representing the exact AG. We see that
LAA produces a curve with almost the same shape as the
exact curve but shifted closer to the x axis with a constant
quantity. Overall, UEG- and AG-based functionals overesti-
mate l�x inside of the potential well and underestimate it on
the surface. For all 	�0.84, this overestimation of l�x in the
center of the potential well is found.

In panel �b�, the same comparison is performed for the
HO gas with 	=3.87, a system with more occupied bands.
We see all the AG-based exchange parametrizations now
agree very well with the exact HO gas results, suggesting the
confinement physics is less essential in this case. The LDA
exchange parametrization still underestimates the magnitude
of exchange in the edge region, as expected.

The UEG- and AG-based n→�x mappings reveal the con-
finement characteristics of the HO gas, as do the V→n map-
pings in Fig. 2. By comparing Figs. 2 and 4, we see consis-
tent information is exposed by these two mappings. For
systems with large 	, both AG-based mappings agree well
with the exact density/exchange energy, indicating the domi-
nance of the edge physics and the lack of confinement phys-
ics in such systems. For small 	 systems, both mappings not
only deviate badly from the exact values, as a strong indica-
tion of the presence of the confinement physics, but also
underestimate values of the density/exchange energy in the
central region of the potential well, suggesting a characteris-
tic effect brought by the confinement.

VII. COMPARISON WITH EXCHANGE FUNCTIONALS

The formulation of the total XC energy, Eq. �1�, leaves us
a freedom of choice for the XC energy per particle,

FIG. 4. �Color online� The n→�x mappings based on the UEG or AG models are applied on the HO electron gases and compared with
the exact �x value. The dimensionless exchange energy per particle �l�x

conv� is plotted as function of the scaled length z̄, for �a� 	=0.23 and
�b� 	=3.87. The exchange parametrization and its corresponding model system are listed in the legend.
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�XC�r ; �n��. Let f�r� be an arbitrary function that gives zero
when integrated over V, then �XC�r ; �n�� and �XC�r ; �n��
+ f�r� /n�r� are equivalently valid despite of considerable dif-
ferences locally. In contrast to LDA and AM05, PBE and
PBEsol use this freedom. Because of this, and since AM05
more heavily relies on the cancellation of errors due to com-
patibility between exchange and correlation, their exchange
energy per particle are quite different, even though the func-
tionals have shown similar performance.40,41

In Fig. 5�a�, the dimensionless exchange energy per par-
ticle given by several popular functionals are compared with
the exact values in the HO gas for a system with 	=0.23.
The AM05 exchange is an interpolation between the LDA
and LAA parametrizations �see Eq. �3�� and shows a similar
curve as the LAA. Instead of a long tail extending far outside
of the edge as the exact results show, PBE and PBEsol
quickly approach zero when going beyond the edge. It
should be especially noted that although these two function-
als fail to approximate the exact exchange per particle out-
side of the edge, inside of the potential well, PBE shows a
very close similarity to the exact values except for a constant
shift to the negative. We suspect this is an indication of the
presence of confinement physics in PBE, as the PBE func-
tional is known to be biased toward the description of small
atomic and chemical systems, and should have considerable
confinement physics built in. PBEsol is more similar to LDA
since it restores the density gradient expansion for exchange.

In Fig. 5�b�, again we show the comparison in a less con-
fined system with 	=3.87. Inside of the edge, we note that
PBEsol more closely agrees with the exact results in the edge

region than do PBE and AM05. Despite the differences be-
tween PBEsol and AM05 in Fig. 5�b�, these two functionals
often lead to similar results when combined with the corre-
lation, as discussed in Ref. 40.

The interpolation index X�s� in Eq. �3� is used to distin-
guish the bulk and edge regions of a system. Equation �3�
implies that in the bulk part, the exchange of AM05 will be
indistinguishable from LDA. AM05 starts to deviate from
LDA only when approaching the edge region of the system.
For the HO gas, we clearly see this trend in Fig. 5, where
AM05 and LDA exchange are the same in the central part of
the potential, and begin to show difference only at the cross-
over from the bulk to the edge.

Ultimately it is the total XC energy EXC that determines
the accuracy of the self consistent DFT calculations. As al-
ready mentioned in Sec. V, the exchange contains a major
part of the confinement physics, and therefore in the follow-
ing section we will focus on examining how accurately
present functionals approximate Ex.

The �dimensionless� total exchange energy of the HO gas,
�l3Ex�, depends on the occupation number 	, and can be
obtained by

�l3Ex�	�� = �
−�

�

�l3n�z̄,	���l�x
conv�z̄,	��dz̄ . �31�

In Fig. 6, we show the relative errors of the total exchange
energy 
Ex /Ex

exact= �Ex−Ex
exact� /Ex

exact introduced by using
different functional approximations. The Ex

exact is the exact
value of the total exchange energy evaluated by inserting

FIG. 5. �Color online� The dimensionless exchange energy per particle �l�x
conv� as function of scaled length z̄ for electrons in an HO

effective potential with �a� 	=0.23 and �b� 	=3.87. The exactly calculated values are compared with those from LDA, AM05, PBE, and
PBEsol functionals. Note that both the PBE and PBEsol exchanges are based on a different definition of exchange energy per particle than
those in Fig. 4 as discussed in the first paragraph of Sec. VII and, in more details, in Ref. 25.

FIG. 6. �Color online� The relative errors of the total exchange energy �Ex−Ex
exact� /Ex

exact from different existing functionals versus
occupancy 	. The squares �blue online� are for ��EXC

AM05−Ec
PBEsol�−Ex

exact� /Ex
exact to illustrate the compatibility of the AM05 exchange and

correlation.
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Eqs. �13� and �16� into Eq. �31�, and Ex is obtained from the
different approximate functionals.

In Fig. 6�a� we show systems with relatively large 	. In
this regime, the absolute value of relative errors from all the
functionals is less than 4% and keep decreasing as 	 in-
creases, which suggests a comparably good approximation
by the present functionals due to the lack of confinement
physics in these systems. When 	 is an integer, more sub-
bands become available to be occupied, resulting in discon-
tinuities in the plot. The relative errors of LDA are largest
and always negative, which implies the underestimation of
the exchange energy. In contrast, PBE always produces posi-
tive errors and overestimates Ex. The opposite corrections of
the equilibrium properties by LDA and PBE have been ob-
served in many applications, and it is also retained here in
the approximation of the Ex in the HO gas with high 	.
Another interesting observation is that PBEsol generates the
least relative errors with both positive and negative signs.
The origin of this can be traced back to Fig. 5�b�, where we
see that PBEsol gives the closest approximation around the
edge. AM05 is not producing the same small relative errors
as PBEsol for the exchange. However, AM05 is constructed
enforcing the cancellation of errors between the exchange
and correlation in order to have an accurate full XC energy.
By adding the exchange errors included in the AM05 corre-
lation �Ec

AM05−Ec
PBEsol� to the AM05 exchange Ex

AM05, it
gives as small relative errors as PBEsol �squares in Fig. 6�a�
�blue online��. This also shows that despite the difference in
exchange and correlation, AM05 and PBEsol give the same
total XC energy for these systems.

For highly confined systems, the situation is far from sat-
isfactory, as seen in Fig. 6�b�. Here systems with 0�	
�0.5 are plotted, where only the first subband is filled. We
note when 	 becomes very small, confinement physics plays
an important role, thus all the functionals fail to produce a
good approximation to Ex

exact. The relative errors can be as
large as 70%, indicating a gross absence of the confinement
physics in the present functionals. The positive relative er-
rors for all functionals in small 	 systems imply that they all
overestimate the absolute value of Ex. It is interesting to
notice that the LDA functional actually provides the least
errors compared to other functionals. Our investigation
shows this is because the overestimation of the local contri-
bution in Eq. �31�, �l3n��l�x

conv�, in the interior region and the
underestimation on the edge of the HO system cancel each
other much better for LDA than for the other functionals.

The failure of conventional local and semilocal function-
als when applied to quasi-two-dimensional systems have
been extensively discussed in previous works in the context
of “dimensional crossover,”42–46 which is the situation when
a three-dimensional �3D� electron gas is approaching the 2D
limit. It is shown that all the semilocal functionals tend to
overestimate the XC energy when one dimension of the elec-
tron gas is compressed to infinitesimal, which is consistent
with what we have found in the present study. However, it is
not our purpose in this paper to review this existing knowl-
edge. Instead, by identifying that the HO gas contains the
missing ingredient of the confinement physics, we pave the
way for future work of constructing a compatible subsystem
functional that incorporates this confinement physics. In our

study we have considered the real situation that all the elec-
tron subbands are available to be occupied while in the pre-
vious work of Refs. 47 and 48 only the lowest subband is
allowed to be populated. We thus probe the full range of
quasi-2D systems between the 2D and 3D limits.

We also note that Constantin proposed a simple semilocal
functional form, named GGA+2D, in Eq. �18� of Ref. 45, to
improve the behavior of the semilocal functional in the
quasi-2D region. The GGA+2D functional recovers the
LDA result in the region where s is small. In the central part
of the HO gas, the scaled density gradient s is approximately
0, and GGA+2D will give the same result as LDA. How-
ever, as already shown in Fig. 4, LDA does not approximate
the exact result well in this part of the HO, which implies
that GGA+2D is not a suitable choice for approximating the
�x of the HO gas.

VIII. CONCLUSION

In this paper, we put forward the concept of confinement
physics, a vital ingredient in many real systems when elec-
trons are strongly localized in space, but which is largely
absent in present density functionals. As a step toward the
construction of a generic density functional that incorporates
the missing ingredient of confinement physics within the
subsystem functional scheme, we study a quasi-two-
dimensional electron-gas model system confined by a HO
potential.

We employ both the potential→density and the density
→exchange mappings based on the UEG and AG models on
the HO gas, and compare with the exact solutions. The UEG-
and AG-based mappings represent the physical characters
when electrons are in the interior and surface regions, and
hence their differences from the exact HO results uncover
the presence of the confinement physics. It is shown that the
amount of confinement physics in the HO gas depends on the
occupation number 	. When 	 is large, more quantized lev-
els are populated and the AG-based mappings are very close
to the exact results, indicating a small portion of confinement
character. When 	 is less than 1, only the lowest subband is
populated, and the exactly determined density and exchange
energy of the HO gas are substantially different than all the
mappings, indicating the dominance of the confinement
physics. The above observations are consistent for both the
potential→density and the density→exchange mappings. In
order to remove doubts about the specificity of the HO gas as
shown in many previous studies, we examine the ground-
state density when the potential is perturbed from the HO to
the MG, and no discontinuous changes have been found,
which confirms that the HO is a suitable system to describe
the general confinement physics.

In the last part of the paper, we compare the total ex-
change energy Ex of the HO gas with several approximations
by conventional LDA and GGA functionals. All of them
overestimate Ex in strongly confined situations, which clearly
illustrates deficiency of the description of confinement phys-
ics in currently used functionals.
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A natural solution to the problem is using orbital-
dependent exchange functionals, with the necessary tradeoff
of much higher computational expenses. Our aim is to con-
struct the simplest possible functional useful for calculations
that are as computationally demanding as those correctly per-
formed with commonly used GGA-type functionals. The
subsystem functional scheme has been very successful in
dealing with the surface physics in the construction of the
AM05 functional. The same strategy can be applied for
building a generic functional that also incorporates the con-
finement physics. The HO gas carries the essential confine-
ment characters and is a suitable model system to build upon.
A good parametrization of the HO gas exchange-correlation
energy and a suitable choice of the interpolation index in

Eq. �4� will hopefully lead to an accurate functional that
includes all these important physical characters.
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